Keynote Speakers

 

Prof. Dennis K. Lieu
University of California, Berkeley, USA
美国加州大学伯克利分校  

Title of Speech: Control of Kinetic Energy Recovery Systems for Hybrid Electric Vehicles 

Abstract: Hybrid Electric Vehicles (HEVs) are becoming increasingly popular as the world become more environmentally conscious. The primary advantage of hybrid electric vehicles is their extended travel range when compared to full electric vehicles. However, the efficiency of hybrid vehicles is limited by the ability of their small electrochemical batteries, intended only to store the energy recoverable from a typical braking cycle, to absorb large regenerative braking currents. Energy in excess of what the battery can safely absorb must be dissipated through the friction brakes of the vehicle. To address these problems, Kinetic Energy Recovery Systems (KERS) incorporates a mechanical flywheel energy storage system into HEVs to increase overall system efficiency, extend battery life, reduce the needed volume of batteries, and extend travel range. The work to be presented shows the design of a low-cost KERS system, using technology appropriate for consumer and commercial HEVs. A supervisory control system for directing the appropriate level of power to the vehicle, chemical batteries, or flywheel is described. A small demonstration vehicle using the KERS system as described was built and tested, and the results from the testing are presented. 

Biography: Dennis Lieu is a Professor of Mechanical Engineering and former Associate Dean of the College of Engineering at UC Berkeley. He received his BS, MS and D.Eng. in Mechanical Engineering from UC Berkeley in 1977, 1978 and 1982, respectively. After working for six years as a design engineer in industry, he returned to his alma mater and has been a member of its faculty for 30 years. He is the author or co-author of numerous articles on permanent magnet motor design and engineering graphics education, and is the lead author of Visualization, Modeling, and Graphics for Engineering Design (Cengage Publishers). His research interests are in the design of electro-mechanical devices and the design of sports equipment. He is a recipient of the UC Berkeley Distinguished Teaching Award. In 2008, he was awarded the Orthogonal Medal for his contributions to engineering graphics education. In 2015, he received the Distinguished Service Award from the Engineering Design Graphics Division of the ASEE. Prof. Lieu is currently engaged in the development of design courseware associated with the new Jacobs Design Institute at UC Berkeley.

 

Prof. Lianqing Yu
Wuhan Textile University, China
武汉纺织大学  

Title of Speech: Mechanism Configuration Design and Application For High-Voltage Transmission Line Power Inspection Maintenance Robot 

Abstract: High-voltage power cable is an important channel for power transmission, regular inspection is the key to ensure safe and stable operation of the transmission line, manual inspection operation has high labor intensity, high risk and low efficiency, an effective method is to use a mobile robot to carry a PTZ camera, operation manipulator and its end tool to instead of manual inspection and maintenance, namely, power inspection maintenance robot. Based on the research at home and abroad, this paper studies and develops different tasks power maintenance robot such as single-split high-voltage conductor suspension insulator string replacement operation robot, double-split high-voltage conductor spacer replacement operation robot, four-split ultra-high-voltage conductor anti-vibration hammer and drainage board maintenance operation robot, the basic configuration and the robot operation motion planning have been proposed, the robot 3D solid model has been established, and the virtual prototype of the inspection maintenance robot which can be reconstructed for the multi-split transmission line and multi-operation tasks have also been developed. The system platform, operation function, structural characteristics and related key technologies involved in system development were systematically summarized. Finally, the inspection operation robots and modern emerging technologies such as big data, cloud computing, artificial intelligence and ubiquitous power Internet of Things technologies were discussed. The deep integration point, the main development and research direction of the future have been pointed out. 

Biography: Lianqing Yu is a Professor of Mechanical Engineering and Dean of the School of Mechanical Engineering and Automation, Wuhan Textile University. He received his BS from the Wuhan Textile University in 1995 and his PhD degree from the Huazhong University of Science and Technology in 2007. He is also a Senior Member of Chinese Mechanical Engineering Society. He has 20 years research experience in mechanical science and engineering. He has published more than 50 papers over his career in dynamic characteristics of mechanical system, energy efficiencies in mobile robots.

 

Prof. Mohd Hamdi Bin Abd Shukor
University of Malaya, Malaysia
马来亚大学  

Title of Speech: Development of specialized engineering equipment 

Abstract: Commercial deployment of research output is a very daunting issue faced by most researchers. The strategy to commercialize market ready prototypes should start with preserving the “crown jewels”, the technology that is the basic premise of the innovation or the essence of what has been proven. Without changing the proven functionality, the parts surrounding the core technology and supporting systems would be designed or redesigned for the best manufacturability, cost, quality, and time-to-market while being integrated into an optimal product architecture.
The Centre of Advanced Manufacturing and Material Processing (AMMP Centre), University Malaya has been involved in numerous commercialization of research outputs and industry related projects from its inception in 2002. Several successful projects is presented as case studies to show its engineering development phases from concept ideas, modelling, lab prototypes, industrial redesign, commercial packaging and testing, scale up production and final sale and support services.
The talk will present the developmental journeys of these projects, highlighting the various stages in the process, such as in design conceptualization, prototyping, testing and commercial packaging. The products highlighted are, a modular Computer Numerically Control (CNC) lathe machine designed for the educational and Small & Medium Enterprises (SME) sectors, a specialized apparatus for the thermal testing of dental materials, an Minimum Quantity Lubrication (MQL) system for nano-lubrication during metal cutting and a powder Physical Vapour Deposition (PVD), a novel apparatus for the deposition of thin films from elemental powders.  

Biography: Professor Ir Dr Mohd Hamdi bin Abd Shukor received his B.Eng. (Mechanical), with Honours from Imperial College London and his M.Sc. In Advanced Manufacturing Technology & System Management from University of Manchester Institute of Science & Technology (UMIST). His Doctoral study was in the field of thin film coating for biomedical applications for which he was conferred Dr. Eng by Kyoto University. He is a Fellow of the Institution of Mechanical Engineering, UK, and a professional engineer registered with the Board of Engineers Malaysia. Prof Hamdi has devoted his career in nurturing research and innovation and has mentored over 70 PhD students, particularly in the field of machining, materials processing and biomaterials. He has authored more than 160 ISI journals and h-index of 26. He is also a director and founder of the Centre of Advanced Manufacturing & Materials Processing (AMMP Centre), in which has grown from modest-size team of researchers and engineers to an interdisciplinary research hub. Prof Hamdi has obtained recognition from various international and local organizations.

 

Plenary Speaker

Assoc. Prof. Suhana Mohd Said
University of Malaya, Malaysia  

Title of Speech: Thermoelectric generators: Design considerations from molecules to devices  

Abstract: Thermoelectricity allows direct conversion of a thermal gradient into electricity. A good thermoelectric generator requires a system which has materials with good electrical conductivity, high Seebeck coefficient (ratio of voltage generated per degree Kelvin), and low thermal conductivity. This paper will illustrate design strategies which will optimize the performance of thermoelectric generator, from the materials and device viewpoint. Case studies from the thermoelectrochemical (TEC) generator, an important subset of thermoelectricity, will be used to illustrate these optimization strategies. The thermoelectrochemical (TEC) effect allows the transformation of thermal energy into electricity by an electrochemical redox reaction of electrolytes at the electrodes of the TEC generator. At the materials level, the use of spin crossover metal complexes (SCO) have been shown to produce high Seebeck coefficients. The molecular properties of these SCO complexes will be elaborated in order to demonstrate a direct correlation between molecular structure and TEC performance. On the device level, the performance of a TEC generator has been shown to be significantly enhanced by the insertion of a composite (PAN/PVDF) polymer separator into the TEC generator. This allows simultaneous allowance of ionic transport across the separator, yet enables the thermal attenuation across the TEC to be improved. Aspects of design for the composite separator will be discussed, including the device architecture, membrane fabrication processes, and membrane composition. Such strategies have significantly succeeded in improving the power generation capabilities of the TEC generator. Potential applications of this novel TEC generator architecture include harvesting of waste heat into useful electricity from low grade domestic waste heat, body heat and solar heat. 

Biography: Suhana Mohd Said is currently an Associate Professor in the Department of Electrical Engineering, Faculty of Engineering, University of Malaya. She obtained her M.Eng. in Engineering Science from the University of Durham, United Kingdom, in 1997. She then gained her D.Phil. from the University of Oxford, United Kingdom, in Liquid Crystal Technology in 2003. She is also registered as a Professional Engineer with the Board of Engineers, Malaysia, and as a Chartered Engineer with the Institution of Engineering and Technology, UK. Her research interests are thermoelectrics materials and devices, electronics packaging and molecular modeling of electronic materials. In particular, she favours using Density Functional Theory (DFT) modeling to provide a framework for a systematic methodology in designing high performance electronic and energy materials from the molecular level. She has been actively researching thermoelectrics as a renewable energy technology since 2009. She has published over 100 scientific papers, filed 5 patents, and has been invited and plenary speaker in several international conferences in her fields of research. She has held visiting researcher positions at Tohoku University, Japan and Cambridge University, United Kingdom. She is also currently the President of the Malaysian Thermoelectrics Society. She also has a particular passion for capacity building of young engineers through a structured engineering education curriculum emphasising on critical thinking, interdisciplinary studies and complex problem solving capabilities.